Six Sigma Quality: Concepts & Cases- Volume I (Statistical Tools in Six Sigma DMAIC process with MINITAB Applications

Chapter 1—

Introduction to Six Sigma, Lean and Design for Six Sigma (DFSS)

Chapter Outline

What is Six Sigma?

Business Success of Six Sigma

Six Sigma Costs and Savings

Six Sigma Current Trends

Statistical Basis of Six Sigma

Comparing a Three Sigma to a Six Sigma

Process

Percent Conforming in a Three Sigma and a

Six Sigma Process

Metrics and Measurements in Six Sigma

Relationship between Six Sigma and Process

Capability Indexes Cp and Cpk

Relationship between Cp and Cpk

What Percent of the Specification Band does

the Process use?

How are Cp and Cpk Related to Six Sigma?

Conducting a Process Capability Study

Service Successes of Six Sigma

Six Sigma Methodologies

Six Sigma Define Phase

Six Sigma Project Organization and

Management

Six Sigma Project Selection

Factors Affecting Project Selection

Quality Costs

Project Definition

Critical to Quality Characteristics

Six Sigma Measure Phase

Six Sigma Analysis Phase

Six Sigma Improvement Phase

Six Sigma Control Phase

Lean Six Sigma

Difference between Lean and Six

Sigma

Integrating Lean and Six Sigma

Lean and Six Sigma Project Selection

Lean and Six Sigma Tools

Concept and Explanation of Lean

and Related Tools

Design for Six Sigma

Concept Development and Concept

Engineering

Design Development

Quality Function Deployment of

Quality Effort

Concurrent Engineering

Computer-Aided Design and

Manufacturing

Robust Design

Detailed Design and Analysis

Failure Mode and Effects Analysis

Reliability and Reliability Testing

Design Optimization

Design Verification

Difference between Six Sigma and Design

for Six Sigma

Summary

Chapter 2 —

Introduction to MINITAB Statistical Software: Getting Started with MINITAB

Chapter Outline

Objectives and Overview

MINITAB Statistical Software: An Overview

Worksheet (Data Window)

Session Window

History Window

Analyzing Your Data

Graphing Your Data: Scale, Labels, Data View, Multiple Graphs, Data Options

Printing and Saving Your Work

Command Sequence Used In This Text

Preparing Your Report

Changing data from Numeric to Text or Text to Numeric

Editing Your Graphs and Plots

An Interactive Session with MINITAB (Tutorial)

Chapter 3—

Visual Representation of Data: Charts and Graphs for Six Sigma

Chapter Outline & Objectives

The chapter will teach you to master powerful visual tools used in Six Sigma and data analysis. You will learn summarizing and describing data using charts and graphs. You will also learn how to construct and interpret the following graphs and charts using computer.

Histograms Graphical Summary of Data Stem-and-leaf Plots Box-Plots

Dotplots

Character Graphs

Bar Charts

Pie Charts

Scatter Plots

Interval Plots

Time Series Plots

Graphing Empirical Cumulative Density Function (CDF)

Probability Plots

Matrix Plot

Marginal Plot

3D Scatter Plot

3D Scatter Plot with Groups

3D Scatter Plot with Projected Lines

3D Scatter Plot

Surface Plot/ Contour Plot

Summary of Some Plots and Their Application

Hands-on Exercises

Chapter 4—

Using Statistics to Summarize Data: Concepts and Computer Analysis

Descriptive Statistics: Numerical Methods

- -Measures of Central Tendency
- -Different Measures of Variation or Dispersion
- -Chebyshev's Theorem
- -Empirical Rule

Calculating Descriptive Statistics

The Empirical Rule

Application of the Empirical Rule

-Construct a Histogram of the Data

Use Random Number Generator, Descriptive Statistics, and Graphs to Check if

the Random Number Generator Produces a Uniform Distributio

Describing Data: An Example

- -Sort the Data
- -Calculate the Statistics based on Ordered Values
- -Construct a stem-and-leaf plot of Data
- -Calculate the Statistics based on Averages
- -Interpret the Confidence Intervals
- -Confidence Interval for the Mean
- -Confidence Interval for the Standard Deviation
- -Confidence Interval for the Median

-Determine Appropriate Class-intervals

Relating Continuous Variables: Scatterplots and Correlation

- -Constructing a Simple Scatterplot
- -Adding Reference Lines to the Scatterplot
- -Scatterplot with a Categorical Variable
- -A 3D Scatterplot

Correlaton

- -Calculating Coefficient of Correlation (r)
- -Scatterplot with Regression

Describing Categorical Variables

- -Creating a Simple Tally
- -Bar Chart for Product 1 Rating
- -Tally and Bar Chart for Product 2 Rating
- -Another Example of Tally

Cross Tabulation: Two-Way Table

-Cross Tabulation with Two and Three Categorical Variables

Hands-on Exercises

Chapter 5—

Quality Tools for Six Sigma

Chapter Outline

Histograms

Evaluating Process Capability Using Histogram

Stem-and-leaf Plot

Box Plot

Run Chart

Example 1: Constructing a Run Chart

Example 2: A Run Chart with Subgroup Size Greater than 1

Example 3: A Run Chart with Subgroup Size Greater than 1

(Data across the Row)

Example 4: Run Chart Showing a Stable Process, a Shift, and a Trend

Pareto Chart

Example 5: A Simple Pareto Chart

Example 6: Pareto Chart with Cumulative Percentage

Example 7: Pareto Chart with Cumulative Percentage when Data are in

One Column

Example 8: Pareto Chart By Variable

Cause-and-Effect Diagram or Fishbone Diagram

Example 9: Cause-and-Effect Diagram (1)

Example 10: Cause-and-effect Diagram (2)

Example 11: Creating other Types of Cause-and-effect Diagram

Summary and Application of Plots

Bivariate Data: Measuring and Describing Two Variables

Scatter Plots

Example 12: Scatterplots with Histogram, Box-plots and Dot plots

Example 13: Scatterplot with Fitted Line or Curve

Example 14: Scatterplot Showing an Inverse Relationship between X and Y

Example 15: Scatterplot Showing a Nonlinear Relationship between X and Y

Example 16: Scatterplot Showing a Nonlinear (Cubic) Relationship between X and Y

Multi-Vari Chart and Other Plots Useful to Investigate Relationships Before Running Analysis of Variance

Example 17: A Multi-vari Chart for Two-factor Design

Main Effects Plot

Interaction Plot

Example 18: Another Multi-vari Chart for a Two-factor Design

Multi-Vari plot

Box Plots

Main Effects Plot

Interaction Plot

Example 19: Mult-vari chart for a Three-factor Design

Multi-Vari Chart

Box Plots

Main Effects Plot

Example 20: Multi-vari Chart for a Four-factor Design

Multi-Vari Chart

Box Plots

Main Effects and Interaction Plots

Example 21: Determine a Machine-to-Machine, Time-to-Time variation
Part-to-Part Variation in a Production Run using Multi-vari and Other Plots

Symmetry Plot
Summary and Applications

Chapter 6—

Process Capability Analysis for Six Sigma

Chapter Outline

Process Capability

Process Capability Analysis

Determining Process Capability

Important Terms and Their Definitions

Short-term and Long-term Variations

Process Capability Using Histograms

Process Capability Using Probability Plot

Estimating Percentage Nonconforming for Non-normal Data: Example 1

Estimating Nonconformance Rate for Non-normal Data: Example 2

Capability Indexes for Normally Distributed Process Data

Determining Process Capability Using Normal Distribution

Formulas for the Process Capability Using Normal Distribution

Relationship between Cp and Cpk

The Percent of the Specification Band used by the Process

Overall Process Capability Indexes (or Performance Indexes)

Case 1: Process Capability Analysis (Using Normal Distribution)

Case 2: Process Capability of Pipe Diameter (Production Run 2)

Case 3:Process Capability of Pipe Diameter (Production Run 3)

Case 4: Process Capability Analysis of Pizza Delivery

Case 5: Process Capability Analysis: Data in One Column (Subgroup size=1)

(a) Data Generated in a Sequence, (b) Data Generated Randomly

Case 6: Performing Process Capability Analysis: When the Process

Measurements do not follow a Normal Distribution

Process Capability using Box Cox Transformation

Process Capability of Non-normal Data Using Box-Cox Transformation

Process Capability of Nonnormal Data Using Johnson's Transformation

Process Capability Using Distribution Fit

Process Capability Using Control Charts

Process Capability Using x-bar and R Chart

Process Capability SixPack

Process Capability Analysis of Multiple Variables Using Normal Distribution

Process Capability Analysis Using Attribute Charts

Process Capability Using a p-Chart

Process Capability Using a u-Chart

Notes on Implementation

Hands-on Exercises

Chapter 7—

Measurement System Analysis: Gage Repeatability &

Reproducibiliy (Gage R &R) Study

Chapter Outline

Introduction

Terms Related to the Measurement Systems Analysis

Systematic Errors

Random Errors

Metrology

Gage

Bias

Resolution

Accuracy, Precision Repeatability, and Reproducibility

Accuracy and Precision

Gage Linearity

Bias

Stability

Repeatability

Reproducibility

Estimating Measurement Error: Some Measurement Models

Classification of Measurement Errors

Graphical Analysis of Gage Study: Gage Run Chart

Example 1
Example 2
Example 3
Example 4
Summary of Examples 1 through 4

Analytical Gage Study: Gage R & R

Case 1: Determining Gage Capability
Case 2: Determining Gage Capability

Case 3: Gage R & R Study (Crossed): X-bar and R Method:

Case 4: Gage R & R Study (Crossed): ANOVA Method Using Case 3 Data:
Case 5: Comparing the Results of Gage Run Chart, Gage R & R: X-bar and R

Method, and Gage R & R: ANOVA Method

Case 6: Another Example on Comparing the Results of Gage Run Chart, Gage

R & R: X-bar and R Method, and Gage R & R: ANOVA Method

Case 7: Gage R & R Study (Nested): ANOVA Method Determining the Bias and Linearity

Case 8: Gage Linearity and Accuracy (Bias) Study 1

Case 9: Gage Linearity and Accuracy (Bias) Study 2

Comparing Two Measuring Instruments for Precision and Accuracy

Case 10: Comparing the Precision and Accuracy of Two Measuring Instruments: 1

Case 11: Comparing the Precision and Accuracy of Two Measuring Instruments: 2

Statistical Control of the Measurement Process

Case 12: Use of Individuals Control Chart to Detect the Shift in Measuring

Instruments

Hands-on Exercises